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Abstract
We introduce a few of the key ideas of statistical analysis using two real-world
examples to illustrate how these ideas are used in practice.

1 Introduction
These lectures introduce to two broad classes of theories of inference, the frequentist and Bayesian
approaches. Two points should be made immediately. The first is that there is no such thing as “the"
answer in statistics. Instead there are answers based on assumptions on which reasonable people may
disagree. Second, none of the current theories of inference is perfect. It is worth appreciating these
points in order to avoid fruitless arguments that cannot be resolved because they are ultimately about
intellectual taste and not mathematical correctness.

For in-depth expositions of statistical analysis, we highly recommend the excellent books on statis-
tics written for physicists, by physicists [1–4] and the very insightful book on the history of the ideas by
Chatterjee [5].

2 Lecture 1: descriptive statistics, probability and likelihood
2.1 Descriptive statistics
Suppose we have a sample of N data X = x1, x2, · · · , xN . It is often useful to summarize these data
with a few numbers called statistics. A statistic is any number that can be calculated from the data
and known parameters. For example, t = (x1 + xN )/2 is a statistic, but if the value of θ is unknown
t = (x1−θ)2 is not. However, we particle physicists tend to refer to any function of the data as a statistic
including those that contain unknown parameters.

The two most important statistics are

the sample mean (or average) x̄ =
1

N

N∑

i=1

xi, (1)

and the sample variance s2 =
1

N

N∑

i=1

(xi − x̄)2,

=
1

N

N∑

i=1

x2
i − x̄2,

= x2 − x̄2. (2)

The sample average is a measure of the center of the distribution of the data, while the sample variance
is a measure of its spread. Statistics that merely characterize the data are called descriptive statistics, of
which the sample average and variance are the most important.

Descriptive statistics can always be calculated because they depend only on a data sample X . We
now consider numbers that cannot be calculated from the data alone. Imagine the repetition, infinitely
many times, of the data generating system that yielded our data sample X , thereby creating an infinite
set of data sets. We shall refer to the data generating system as an experiment and the infinite set of the
results of the experiments as an infinite ensemble. This is clearly an abstraction.
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The most common operation to perform on an ensemble is to compute the ensemble average of
the statistics, which yield numbers such as the following.

Ensemble average 〈x〉
Mean µ

Error ε = x− µ
Bias b = 〈x〉 − µ
Variance V = 〈(x− 〈x〉)2〉
Standard deviation σ =

√
V

Mean square error MSE = 〈(x− µ)2〉
Root MSE RMS =

√
MSE (3)

None of these numbers can be calculated from data because the data needed do not objectively exist.
Even in an experiment simulated on a computer, there are very few of these numbers we can calculate.
If we know the mean µ, perhaps because we have chosen its value, we can certainly calculate the error ε
for any simulated datum x. But, we can only approximate the ensemble average 〈x〉, bias b, variance V ,
and MSE, since the ensembles available either on our computers or in the real world are always finite.
The point is that the numbers that characterize the infinite ensemble are also abstractions.

The MSE is the most widely used measure of the closeness of an ensemble of numbers to some
parameter µ. The square root of the MSE is called the root mean square (RMS)1. The MSE can be
written as

MSE = V + b2, (4)

Exercise 1: Show this

the sum of the variance and the square of the bias, a very important result with practical consequences.
For example, suppose that µ represents the mass of the Higgs boson and x is a complicated function that
is considered an estimator of the mass. An estimator is any function, which when data are entered into
it, yields an estimate of the quantity of interest.

As noted, many of the numbers listed in Eq. (3) cannot be calculated because the information
needed is unknown. This is true, in particular, of the bias. However, sometimes it is possible to relate the
bias to another ensemble quantity. Consider the ensemble average of the sample variance, Eq. (2),

〈s2〉 = 〈x2〉 − 〈x̄2〉,

= V − V

N
,

Exercise 2a: Show this

Exercise 2b: Use the method Rndm() of the Root
class TRandom3 to approximate the quantities in
Eq. (3).

2.2 Probability
When the weather forecast specifies that there is a 80% chance of snow tomorrow at CERN, most people
have an intuitive sense of what this means. Likewise, most people have an intuitive understanding of

1Sometimes, the RMS and standard deviation are using interchangeably. However, the RMS is computed with respect to
µ, while the standard deviation is computed with respect to the ensemble average 〈x〉. The RMS and standard deviations are
identical only if the bias is zero.
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what it means to say that there is a 50-50 chance for a tossed coin to land heads up. Probabilistic
ideas are thousands of years old, but, starting in the sixteenth century these ideas were formalized into
increasingly rigorous mathematical theories of probability. In the theory formulated by Kolmogorov in
1933, Ω is some fixed mathematical space, E1, E2, · · · ⊂ Ω are subsets (called events) defined in some
reasonable way2, and P (Ej) is a number associated with subset Ej . These numbers satisfy the

Kolmogorov Axioms
1. P (Ej) ≥ 0

2. P (E1 + E2 + · · · ) = P (E1) + P (E2) + · · · for disjoint subsets

3. P (Ω) = 1.

Consider two subsets A = E1 and B = E2. The quantity AB means A and B, while A + B means
A or B, with associated probabilities P (AB) and P (A + B), respectively. Kolmogorov assumed, not
unreasonably given the intuitive origins of probability, that probabilities sum to unity; hence the axiom
P (Ω) = 1. However, this assumption can be dropped so that probabilities remain meaningful even if
P (Ω) =∞ [6].

Figure 1 suggests another probability, namely, the number P (A|B) = P (AB)/P (B), called the
conditional probability of A given B. This permits statements such as: “the probability that this track
was created by an electron given the measured track parameters" or “the probability to observe 17 events
given that the mean background is 3.8 events". Conditional probability is a very powerful idea, but the
term itself is misleading. It implies that there are two kinds of probability: conditional and unconditional.
In fact, all probabilities are conditional in that they always depend on a specific set of conditions, namely,
those that define the space Ω. It is entirely possible to embed a family of subsets of Ω into another space
Ω′ which assigns to each family member a different probability P ′. A probability is defined only relative
to some space of possibilities Ω.

Fig. 1: Venn diagram of the sets A, B, and AB. P (A)

is the probability of A, while P (A|B) = P (AB)/P (B)

is the probability of AB relative to that of B, i.e., the
probability of A given the condition B.

A andB are said to be mutually exclusive if
P (AB) = 0, that is, if the truth of one denies the
truth of the other. They are said to be exhaustive if
P (A)+P (B) = 1. Figure 1 suggests the theorem

P (A+B) = P (A) + P (B)− P (AB), (5)

Exercise 3: Prove theorem

which can be deduced from the rules given
above. Another useful theorem is an immedi-
ate consequence of the commutativity of “anding"
P (AB) = P (BA) and the definition of P (A|B),
namely,

Bayes Theorem

P (B|A) =
P (A|B)P (B)

P (A)
, (6)

which provides a way to convert the probability
P (A|B) to the probability P (B|A). Using Bayes
theorem, we can, for example, deduce the probability P (e|x) that a particle is an electron, e, given a set
of measurements, x, from the probability P (x|e) of a set of measurements given that the particle is an
electron.

2If E1, E2, · · · are meaningful subsets of Ω, so to is the complement E1, E2, · · · of each, as are countable unions and
intersections of these subsets.
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2.2.1 Probability distributions
In this section, we illustrate the use of these rules to derive more complicated probabilities. First we start
with a definition:

A Bernoulli trial, named after the Swiss mathematician Jacob Bernoulli (1654 – 1705), is
an experiment with only two possible outcomes: S = success or F = failure.

Example

Each collision between protons at the Large Hadron Collider (LHC) is a Bernoulli trial in
which something interesting happens (S) or does not (F ). Let p be the probability of a
success, which is assumed to be the same for each trial. Since S and F are exhaustive, the
probability of a failure is 1−p. For a given orderO of n proton-proton collisions and exactly
k successes, and therefore exactly n− k failures, the probability P (k,O, n, p) is given by

P (k,O, n, p) = pk(1− p)n−k. (7)

If the order O of successes and failures is judged to be irrelevant, we can eliminate the order
from the problem by summing over all possible orders,

P (k, n, p) =
∑

O

P (k,O, n, p) =
∑

O

pk(1− p)n−k. (8)

This procedure is called marginalization. It is one of the most important operations in
probability calculations. Every term in the sum in Eq. (8) is identical and there are

(
n
k

)
of

them. This yields the binomial distribution,

Binomial(k, n, p) ≡
(
n

k

)
pk(1− p)n−k. (9)

By definition, the mean number of successes a is given by

a =

n∑

k=0

kBinomial(k, n, p),

= pn. (10)

Exercise 4: Show this

At the LHC n is a number in the trillions, while for successes of interest such as the creation
of a Higgs boson the probability p << 1. In this case, it proves convenient to consider the
limit p→ 0, n→∞ in such a way that a remains constant. In this limit

Binomial(k, n, p)→ e−aak/k!,

≡ Poisson(k, a). (11)

Exercise 5: Show this

Below we list the most common probability distributions.

Discrete distributions

Binomial(k, n, p)
(
n

k

)
pk(1− pn−k

4
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Poisson(k, a) ak exp(−a)/k!

Multinomial(k, n, p)
n!

k1! · · · kK !

K∏

i=1

pkii ,
K∑

i=1

pi = 1,
K∑

i=1

ki = n

Continuous densities
Uniform(x, a) 1/a

Gaussian(x, µ, σ) exp[−(x− µ)2/(2σ2)]/(σ
√

2π)

(also known as the Normal density)

LogNormal(x, µ, σ) exp[−(lnx− µ)2/(2σ2)]/(xσ
√

2π)

Chisq(x, n) xn/2−1 exp(−x/2)/[2n/2Γ(n/2)]

Gamma(x, a, b) xa−1ab exp(−ax)/Γ(b)

Exp(x, a) a exp(−ax)

Beta(x, n,m)
Γ(n+m)

Γ(m) Γ(n)
xn−1 (1− x)m−1 (12)

Particle physicists tend to use the term probability distribution for both discrete and continuous func-
tions, such as the Poisson and Gaussian distributions, respectively. But, strictly speaking, the continuous
functions are probability densities, not probability distributions. In order to compute a probability from
a density we need to integrate the density over a finite set in x.

2.3 Likelihood
Let us assume that p(x|θ) is a probability density function (pdf) such that P (A|θ) =

∫
A p(x|θ) dx

is the probability of the statement A = x ∈ Rx, where x denotes possible data, θ the parameters
that characterize the probability model (that is the probability together with all the assumptions on
which it is based), and Rx is a finite set. We shall use probability model as shorthand for probability
density function (for continuous variables) or probability mass function (pmf) (basically, probabilities
for discrete variables). If x is discrete, then both p(x|θ) and P (A|θ) are probabilities. The likelihood
function is simply the probability model p(x|θ) evaluated at the data xO actually obtained, i.e., the
function p(xO|θ). The following are examples of likelihoods.

Example 1

In 1995, CDF and DØ discovered the top quark [8, 9] at Fermilab. The DØ Collaboration
found x = N = 17 events. For a counting experiment, the datum can be modeled using

p(x|n) = Poisson(x, n) probability to get x events

p(N |n) = Poisson(N,n) likelihood of N events

= nN exp(−n)/N !

We shall analyze this example in detail in Lectures 2 and 3.

Example 2

Figure 2 shows a plot of the distance modulus versus redshift for N = 580 Type 1a super-
novae [7]. These heteroscedastic data3 D = {zi, xi ± σi} are modeled using the likelihood

p(D|ΩM ,ΩΛ, Q) =

N∏

i=1

Gaussian(xi, µi, σi),

3Data in which each item, xi, or group of items has a different uncertainty.
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Fig. 2: Plot of the data points (zi, xi±σi) for 580 Type 1a supernovae [7] showing a fit of the standard cosmological
model (with a cosmological constant) to these data (curve).

which is an example of an un-binned likelihood. The cosmological model is encoded in the
distance modulus function µi, which depends on the redshift zi and the matter density and
cosmological constant parameters ΩM and ΩΛ, respectively. (See Ref. [10] for an accessible
introduction to the analysis of these data.)

Example 3

The discovery of a Higgs boson by ATLAS [11] and CMS [12] in the di-photon final state
(pp→ H → γγ) made use of an un-binned likelihood of the form,

p(x|s,m,w, b) = exp[−(s+ b)]
N∏

i=1

[sfs(xi|m,w) + bfb(xi)]

where x = di-photon masses

m = mass of boson

w = width of resonance

s = expected (i.e., mean) signal count

b = expected background count

fs = signal probability density

fb = background probability density

Exercise 6: Show that a binned multi-Poisson
likelihood yields an un-binned likelihood of this
form as the bin widths go to zero

The likelihood function is arguably the most important quantity in a statistical analysis because it
can be used to answer questions such as the following.

6
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1. How do I estimate a parameter?
2. How do I quantify its accuracy?
3. How do I test an hypothesis?
4. How do I quantify the significance of a result?

Writing down the likelihood function requires:

1. identifying all that is known, e.g., the observations,
2. identifying all that is unknown, e.g., the parameters,
3. constructing a probability model for both.

Many analyses in particle physics do not use likelihood functions explicitly. However, since the data
we use are stochastic, the failure to reflect deeply on their probabilistic nature and to model it explicitly
leads to analyses that may not as good as they could be. Deconstructing carefully what is being done in
an analysis is a habit that should be encouraged so that an accurate probabilistic model of the analysis
can be constructed.

3 Lecture 2: the frequentist approach
In this lecture, we consider statistical inference from the frequentist viewpoint. In lecture 3, we consider
the Bayesian approach. In our opinion, both are needed to make sense of statistical inference, though
this is not the dominant opinion in particle physics.

The most important principle in the frequentist approach is that enunciated by the Polish statisti-
cian Jerzy Neyman in the 1930s, namely,

The frequentist principle

The goal of a frequentist analysis is to construct statements so that a fraction f ≥ p of them
are guaranteed to be true over an infinite ensemble of statements.

The fraction f is called the coverage probability, or coverage for short, and p is called the confidence
level (C.L.). A procedure which satisfies the frequentist principle is said to cover. The confidence level
as well as the coverage is a property of the ensemble of statements. Consequently, the confidence level
may change if the ensemble changes. In a seminal paper published in 1937, Neyman [13] invented the
concept of the confidence interval, a way to quantify uncertainty, that respects the frequentist principle.
The confidence interval is such an important idea that it is worth working through the concept in detail.

3.1 Confidence intervals
Consider an experiment that observesD events with expected (that is, mean) signal s and no background.
Neyman devised a way to make statements of the form

s ∈ [l(D), u(D)], (13)

with the a priori guarantee that at least a fraction p of them will be true over an ensemble of statements
of this kind. A procedure for constructing such intervals is called a Neyman construction. The fre-
quentist principle must hold for any ensemble of experiments, not necessarily all making the same kind
of observations and statements. For simplicity, however, we shall consider the experiments to be of the
same kind and to be completely specified by a single unknown parameter s. The Neyman construction is
illustrated in Fig. 3.

The construction proceeds as follows. Choose a value of s and use some rule to find an interval
in the space of observations (or, more generally, a region), for example, the interval defined by the two

7
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Fig. 3: The Neyman construction. Plotted is the Cartesian product of the parameter space, with parameter s, and
the space of observations with potential observationsD. For a given value of s, the observation space is partitioned
into three disjoint intervals, such that the probability to observe a count D within the interval demarcated by the
two vertical lines is f ≥ p, where p = C.L. is the desired confidence level. The inequality is needed because, for
discrete data, it may not be possible to find an interval with f = p exactly.

vertical lines in the center of the figure, such that the probability to obtain a count in this interval is f ≥ p,
where p is the desired confidence level. Then move to another value of s and repeat the procedure. The
procedure is repeated for a sufficiently dense set of points in the parameter space over a sufficiently large
range in s. When this is done, as illustrated in Fig. 3, the intervals of probability content f will form a
band in the Cartesian product of the parameter space and the observation space. The upper edge of this
band defines the curve u(D), while the lower edge defines the curve l(D). These curves are the outcome
of the Neyman construction.

For a given value of s, the interval with probability content f in the space of observations is not
unique since different rules for choosing the interval will, in general, yield different intervals. Neyman
suggested choosing the interval so that the probability to obtain an observation to the right or left of the
interval are the same (for a given value of s), which yields the so-called central intervals. One virtue of
these intervals is that their boundaries can be more efficiently calculated by solving the equations,

P (x ≤ D|u) = αL,

P (x ≥ D|l) = αR, (14)

a mathematical fact that becomes clear if we stare at Fig. 3 long enough.

Another rule was suggested by Feldman and Cousins [14]. For our example, the Feldman-Cousins
rule requires that the potential observations {D} be ordered in descending order, D(1), D(2), · · · , of
the likelihood ratio p(D|s)/p(D|ŝ), where ŝ is the maximum likelihood estimator (see Sec. 3.2) of the
parameter s. Once ordered, we compute the running sum f =

∑
j p(D(j)|s) until f equals or just

exceeds the desired confidence level p. This rules does not guarantee that the potential observations D
are contiguous, but this does not matter because we simply take the minimum element of the set {D(j)}
to be the lower bound of the interval and its maximum element to be the upper bound.

Another simple rule is the mode-centered rule: orderD in descending order of p(D|s) and proceed
as with the Feldman-Cousins rule. In principle, absent criteria for choosing a rule, there is nothing to
prevent the use of ordering rules randomly chosen for different values of s! Figure 4 compares the widths
of the intervals [l(D), u(D)] for three different ordering rules, central, Feldman-Cousins, and mode-
centered as a function of the count D. It is instructive to compare these widths with those provided

8
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by the well-known root(N) interval, l(D) = D −
√
D and u(D) = D +

√
D. Of the three sets of

intervals, the ones suggested by Neyman are the widest, the Feldman-Cousins and mode-centered ones
are of similar width, while the root(N) intervals are the shortest. So why are we going through all the
trouble of the Neyman construction? We shall return to this question shortly.

Central 

Feldman-Cousins 

Mode-Centered 

D ± √D 

Fig. 4: Interval widths as a function of count D for four
sets of intervals.

Having completed the Neyman construc-
tion and found the curves u(D) and l(D) we
can use the latter to make statements of the form
s ∈ [l(D), u(D)]: for a given observation D,
we simply read off the interval [l(D), u(D)] from
the curves. For example, suppose in Fig. 3 that
the true value of s is represented by the horizon-
tal line that intersects the curves u(D) and l(D)
and which therefore defines the interval demar-
cated by the two vertical lines. If the observa-
tion D happens to fall in the interval to the left
of the left vertical line, or to the right of the right
vertical line, then the interval [l(D), u(D)] will
not bracket s. However, if D falls between the
two vertical lines, the interval [l(D), u(D)] will
bracket s. Moreover, by virtue of the Neyman
construction, a fraction f of the intervals [l(D), u(D)] will bracket the value of s whatever its value
happens to be, which brings us back to the question about the root(N) intervals. Figure 5 shows the
coverage probability over the parameter space of s. As expected, the three rules, Neyman’s, that of
Feldman-Cousins, and the mode-centered, satisfy the condition coverage probability ≥ confidence level
over all values of s that are possible a priori; that is, the intervals cover. However, the root(N) intervals
do not and indeed fail badly for s < 2.

Central 

Feldman-Cousins 

Mode-Centered 

D ± √D 

Fig. 5: Interval widths as a function of count D for four
sets of intervals.

However, the coverage probability of the
root(N) intervals bounces around the (68%) con-
fidence level for vaues of s > 2. Therefore, if we
knew for sure that s > 2, it would seem that using
the root(N) intervals may not be that bad after all.

So what, after all this, does the statement
s ∈ [l(D), u(D)] at 100p% C.L. mean in this ap-
proach, given that p is a property of the ensem-
ble to which this statement belongs? In means
this: s ∈ [l(D), u(D)] is a member of an en-
semble of statements a fraction f ≥ p of which
are true. In principle, in order to verify this we
need just count how many statements of the form
s ∈ [l(D), u(D)] are true and divide by the to-
tal number of statements. Unfortunately, this re-
quires that we know which statements are true.

But if we knew that we would not need a theory of statistical inference!

Neyman required a procedure to cover whatever the value of all the parameters, be they known
or unknown, of the probability models that describe the data generation mechanisms. This is a very tall
order, which cannot be met in general. In practice, we resort to approximations, the most widely used of
which is the profile likelihood to which we now turn.
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3.2 The profile likelihood
As noted in Section 2.3, likelihood functions can be used to estimate the parameters on which they
depend. The method of choice to do so, in a frequentist analysis, is called maximum likelihood, a
method first used by Karl Frederick Gauss and developed into a formidable statistical tool in the 1930s
by Sir Ronald A. Fisher [15], perhaps the most influential statistician of the twentieth century. The DØ
top quark discovery example illustrates the method.

Example: Top Quark Discovery Revisited

We start by listing

the knowns
D = N,B where

N = 17 observed events

B = 3.8 estimated background events with uncertainty δB = 0.6

and the unknowns
b mean background count

s mean signal count.

Next, we construct a probability model for the data D = N,B. Since this is a counting
experiment, we shall assume that p(x|s, b) includes a Poisson distribution with mean count
s + b. In the absence of details about how the background B was arrived at, the standard
assumption is that data of the form y ± δy can be modeled with a Gaussian (or normal)
density. However, we shall do something slightly better.

Suppose that the observed count in the control region is Q and the mean count is bk, where
k (ideally) is the known scale factor between the control and signal regions. But, since we
are given B and δB rather than Q and k, we need to relate the two pairs of numbers. The
simplest model isB = Q/k and δB =

√
Q/k from which we can infer an effective countQ

usingQ = (B/δB)2. Since the scale factor k is not given, we shall use the obvious estimate
k ∼ Q/B = B/δB2. With these assumptions, our likelihood function is

p(D|s, b) = Poisson(N, s+ b) Poisson(Q, bk), (15)

where

Q = (B/δB)2 = 41.11,

k = B/δB2 = 10.56.

The first term in Eq. (15) is the likelihood for the count N = 17, while the second term is
the likelihood for B = 3.8, or equivalently the count Q. The fact that Q is not an integer
causes no difficulty; we merely continue the Poisson distribution to non-integer Q using
(bk)Q exp(−bk)/Γ(Q+ 1).

The maximum likelihood estimators for s and b are found by maximizing Eq. (15), that is,
by solving the equations

∂ ln p(D|s, b)
∂s

= 0 leading to ŝ = N −B,

and
∂ ln p(D|s, b)

∂b
= 0 leading to b̂ = B,

as expected.

A more complete model would account for the uncertainty in k.

10
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The maximum likelihood method is the most widely used method for estimating parameters be-
cause it generally leads to reasonable estimates. But the method has features, or encourages practices,
which, somewhat uncharitably, we label the good, the bad, and the ugly!

– The Good

– Maximum likelihood estimators are consistent: the RMS goes to zero as more and more data
are included in the likelihood. This is an extremely important property, which basically says
it makes sense to take more data because we shall get more accurate results. One would not
knowingly use an inconsistent estimator!

– If an unbiased estimator for a parameter exists the maximum likelihood method will find it.
– Given the MLE for s, the MLE for any function y = g(s) of s is, very conveniently, just
ŷ = g(ŝ). This is a very nice practical feature which makes it possible to maximize the
likelihood using the most convenient parameterization of it and then transform back to the
parameter of interest at the end.

– The Bad (according to some!)

– In general, MLEs are biased.

Exercise 7: Show this
Hint: Taylor expand y = g(ŝ+h) about the MLE ŝ,
then consider its ensemble average.

– The Ugly (according to some!)

– The fact that most MLEs are biased encourages the routine application of bias correction,
which can waste data and, sometimes, yield absurdities.

Here is an example of the seriously ugly.

Example

For a discrete probability distribution p(k), the moment generating function is the ensem-
ble average

G(x) = 〈exk〉
=
∑

k

exk p(k).

For the binomial, with parameters p and n, this is

G(x) = (exp+ 1− p)n, Exercise 8a: Show this

which is useful for calculating moments

µr =
drG

dxr

∣∣∣∣
x=0

=
∑

k

kr p(k),

e.g., µ2 = (np)2 + np− np2 for the binomial distribution. Given that k events out n pass a
set of cuts, the MLE of the event selection efficiency is the obvious estimate p̂ = k/n. The
equally obvious estimate of p2 is (k/n)2. But,

〈(k/n)2〉 = p2 + V/n, Exercise 8b: Show this
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so (k/n)2 is a biased estimate of p2 with positive bias V/n. The unbiased estimate of p2 is

k(k − 1)/[n(n− 1)], Exercise 8c: Show this

which, for a single success, i.e., k = 1, yields the sensible estimate p̂ = 1/n, but the less
than useful p̂2 = 0!

In order to infer a value for the parameter of interest, for example, the signal s in our 2-parameter
likelihood function in Eq. (15), the likelihood must be reduced to one involving the parameter of interest
only, here s, by getting rid of all the nuisance parameters, here the background parameter b. A nuisance
parameter is any parameter that is not of current interest. In a strict frequentist calculation, this reduction
to the parameter of interest must be done in such a way as to respect the frequentist principle: coverage
probability ≥ confidence level. In general, this is very difficult to do exactly.

In practice, we replace all nuisance parameters by their conditional maximum likelihood esti-
mates (CMLE). The CMLE is the maximum likelihood estimate conditional on a given value of the
current parameter (or parameters) of interest. In the top discovery example, we construct an estimator of
b as a function of s, b̂(s), and replace b in the likelihood p(D|s, b) by b̂(s) to yield a function pPL(D|s)
called the profile likelihood.

Since the profile likelihood entails an approximation, namely, replacing unknown parame-
ters by their conditional estimates, it is no longer the likelihood but rather an approximation
to it. Consequently, the frequentist principle is not guaranteed to be satisfied exactly.

But, if certain conditions are met (Wilks’ theorem, 1938), roughly that the MLEs do not occur on the
boundary of the parameter space and the likelihood becomes ever more Gaussian as the data become
more numerous — that is, in the so-called asymptotic limit, then if the true density of x is p(x|s, b) the
random number

t(x, s) = −2 lnλ(x, s), (16)

where λ(x, s) =
pPL(x|s)
pPL(x|ŝ) , (17)

has a probability density that converges to a χ2 density with one degree of freedom. More generally,
if the numerator of λ contains m free parameters the asymptotic density of t is a χ2 density with m
degrees of freedom. Therefore, we may take t(D, s) to be a χ2 variate, at least approximately, and solve
t(D, s) = n2 for s to get approximate n-standard deviation confidence intervals. In particular, if we
solve t(D, s) = 1, we obtain approximate 68% intervals. This calculation is what Minuit, and now
TMinuit, has done countless times since the 1970s! Wilks’ theorem provides the main justification for
using the profile likelihood. We again use the top discovery example to illustrate the procedure.

Example: Top Quark Discovery Revisited Again

The conditional MLE of b is found to be

b̂(s) =
g +

√
g2 + 4(1 + k)Qs

2(1 + k)
, (18)

where

g = N +Q− (1 + k)s.
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Fig. 6: (a) Contours of the DØ top discovery likelihood and the graph of b̂(s). (b) Plot of − lnλ(17, s) versus the
expected signal s. The vertical lines show the boundaries of the approximate 68% interval.

The likelihood p(D|s, b) is shown in Fig. 6(a) together with the graph of b̂(s). The mode
(i.e. the peak) occurs at s = ŝ = N −B. By solving

−2 ln
pPL(17|s)

pPL(17|17− 3.8)
= 1

for s we get two solutions s = 9.4 and s = 17.7. Therefore, we can make the statement
s ∈ [9.4, 17.7] at approximately 68% C.L. Figure 6(b) shows a plot of − lnλ(17, s) created
using the RooFit [16] and RooStats [17] packages.

Exercise 9: Verify this interval using the RooFit/RooStats package

Intervals constructed this way are not guaranteed to satisfy the frequentist principle. In
practice, however, their coverage is very good for the typical probability models used in
particle physics, even for modest amounts of data.

3.3 Hypothesis tests
It is hardly possible in experimental particle physics to avoid testing hypotheses, testing that invariably
leads to decisions. For example, electron identification entails hypothesis testing; given dataD we ask: is
this particle an isolated electron or is it not an isolated electron? In the discovery of the Higgs boson, we
had to test whether, given the data available in early summer 2012, the Standard Model without a Higgs
boson, a somewhat ill-founded background-only model, or the Standard Model the new boson in July
2012, the background + signal model, was the preferred hypothesis. We decided that the latter model
was preferred and announced the discovery of a new boson. Given the ubiquity of hypothesis testing, it
is important to have a grasp of the methods that have been invented to implement it.

One method was due to Fisher [15], another was invented by Neyman, and a third (Bayesian)
method was proposed by Sir Harold Jeffreys [18], all around the same time. We first describe the method
of Fisher, then follow with a description of the method of Neyman. For concreteness, we consider the
problem of deciding between a background-only model and a background + signal model.
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3.3.1 Fisher’s approach

p(x | H
0
)

x x
0

Fig. 7: The p-value is the tail-probability, P (x >

x0|H0), calculated from the probability density under
the null hypothesis, H0. Consequently, the probabil-
ity density of the p-value under the null hypothesis is
Uniform(x, 1).

In Fisher’s approach, we construct a null hypoth-
esis, often denoted by H0, and reject it should
some measure be judged small enough to cast
doubt on the validity of this hypothesis. In our
example, the null hypothesis is the background-
only model, for example, the SM without a Higgs
boson. The measure is called a p-value and is de-
fined by

p-value(x0) = P (x > x0|H0), (19)

where x is a statistic designed so that large values
indicate departure from the null hypothesis. This
is illustrated in Fig. 7, which shows the location
of the observed value x0 of x. The p-value is the probability that x could have been higher than the
x actually observed. It is argued that a small p-value implies that either the null hypothesis is false
or something rare has occurred. If the p-value is extremely small, say ∼ 3 × 10−7, then of the two
possibilities the most common response is to presume the null to be false. If we apply this method to the
DØ top quark discovery data, and neglect the uncertainty in the null hypothesis, we find

p-value =

∞∑

N=17

Poisson(N, 3.8) = 5.7× 10−7.

We usually report a more intuitive number by converting the p-value to the scale defined by

Z =
√

2 erf−1(1− 2p-value). (20)

This is the number of Gaussian standard deviations away from the mean4. A p-value of 5.7 × 10−7

corresponds to a Z of 4.9σ. The Z-value can be calculated using the Root function

Z = -TMath::NormQuantile(p-value).

3.3.2 Neyman’s approach
In Neyman’s approach two hypotheses are considered, the null hypothesis H0 and an alternative hypoth-
esis H1. This is illustrated in Fig. 8. In our example, the null is the same as before but the alternative
hypothesis is the SM with a Higgs boson. Again, one generally chooses x so that large values would cast
doubt on the validity of H0. However, the Neyman test is specifically designed to respect the frequentist
principle, which is done as follows. A fixed probability α is chosen called the significance (or size) of
the test, which for a specific class of experiments corresponds to some threshold xα defined by

α = P (x > xα|H0). (21)

Should the observed value x0 > xα, or equivalently, p-value(x0) < α, the hypothesis H0 is rejected
in favor of the alternative. In particle physics, in addition to applying the Neyman hypothesis test, we
also report the p-value. This is sensible because there is a more information in the p-value than merely
reporting the fact that a null hypothesis was rejected at a significance level of α.

4erf(x) = 1√
π

∫ x
−x exp(−t2) dt is the error funtion.
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Fig. 8: Distribution of a test statistic x for two hypothe-
ses, the null H0 and the alternative H1. In Neyman’s
approach to testing, α = P (x > xα|H0) is a fixed proba-
bility called the significance of the test, which for a given
class of experiments corresponds the threshold xα. The
hypothesis H0 is rejected if x > xα.

The Neyman method satisfies the frequen-
tist principle by construction. Since the signifi-
cance of the test is fixed, α is the relative fre-
quency with which true null hypotheses would be
rejected and is called the Type I error rate.

However, since we have specified an alter-
native hypothesis there is more that can be said.
Figure 8 shows that we can also calculate

β = P (x ≤ xα|H1), (22)

which is the relative frequency with which we
would reject the hypotheses of the form of H1 if
they are true. These mistakes are called Type II
errors. The quantity 1 − β is called the power of
the test and is the relative frequency with which we would accept H1 if true. Obviously, for a given α we
want to maximize the power. Indeed, this is the basis of the Neyman-Pearson lemma (see for example
Ref. [2]), which asserts that given two simple hypotheses — that is, hypotheses in which all parameters
have well-defined values — the optimal statistic t to use in the hypothesis test is the likelihood ratio
t = p(x|H1)/p(x|H0).

1 

x

 

x!

p(x | H0 ) p(x | H1)

Fig. 9: See Fig. 8 for details. Unlike the case in Fig. 8,
the two hypotheses H0 and H1 are not that different. It is
then not clear whether it makes practical sense to reject
H0 when x > xα only to replace it with an hypothesis
H1 that is not much better.

Maximizing the power seems sensible.
Consider Fig. 9. The significance of the test in this
figure is the same as that in Fig. 8, so the Type I
error rate is identical. However, the Type II error
rate is much greater in Fig. 9 than in Fig. 8, that is,
the power of the test is considerably weaker in the
former. In that case, there may be no compelling
reason to reject the null since the alternative is not
that much better. This insight was one source of
Neyman’s disagreement with Fisher. Neyman ob-
jected to the possibility that one might reject a null
hypothesis regardless of whether it made sense to
do so. He insisted that the task is always one of
deciding between competing hypotheses. Fisher’s
counter argument was that an alternative hypoth-

esis may not be available, but we may nonetheless wish to know whether the only hypothesis that is
available is worth keeping. As we shall see, the Bayesian approach also requires an alternative, in agree-
ment with Neyman, but in a way that neither he nor Fisher agreed with!

We have assumed that the hypotheses H0 and H1 are simple, that is, fully specified. Unfortu-
nately, most of the hypotheses that arise in realistic particle physics analyses are not of this kind. In the
Higgs boson discovery analyses by ATLAS and CMS the probability models depend on many nuisance
parameters for which only estimates are available. Consequently, neither the background-only nor the
background + signal hypotheses are fully specified. Such hypotheses are called compound hypotheses.
In order to illustrate how hypothesis testing proceeds in this case, we again turn again to the top discovery
example.

Example

As we saw in Sec. 3.2, the standard way to handle nuisance parameters in the frequentist ap-
proach is to replace them by their conditional MLEs and thereby reduce the likelihood func-
tion to the profile likelihood. In the top discovery example, we obtain a function pPL(D|s)
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that depends on the single parameter, s. We now treat this function as if it were a likelihood
and appeal to both the Neyman-Pearson lemma, which suggests the use of likelihood ratios,
and Wilks’ theorem to motivate the use of the function t(x, s) given in Eq. (17) to distinguish
between two hypotheses: the hypothesis H1 in which s = ŝ = N − B and the hypothesis
H0 in which s 6= ŝ, for example, the background-only hypothesis s = 0. In the context of
testing, t(x, s) is called a test statistic, which, unlike a statistic as we have defined it (see
Sec. 2.1), usually depends on at least one unknown parameter.

In principle, the next step is the computationally arduous task of simulating the distribution
of the statistic t(x, s). The task is arduous because a priori the probability density p(t|s, b)
can depend on all the parameters that exist in the original likelihood. If this is the case, then
after all this effort we seem to have achieved a pyrrhic victory! But, this is where Wilks’
theorem saves the day, at least approximately. We can avoid the burden of simulating t(x, s)
because the latter is approximately a χ2 variate.

Using N = 17 and s = 0, we find
√
t0 =

√
t(17, 0) = 4.6. According to the results shown

in Fig. (6)(a), N = 17 may can be considered “a lot of data"; therefore, we may use t0
to implement a hypothesis test by comparing t0 with a fixed value tα corresponding to the
significance level α of the test.

4 Lecture 3: the Bayesian approach
In this lecture, we introduce the Bayesian approach to inference, again using the top quark discovery data
from DØ to illustrate the ideas.

The Bayesian approach is merely applied probability theory (see Section 2.2). A method is
Bayesian if

– it is based on the degree of belief interpretation of probability and
– it uses Bayes theorem

p(θ, ω|D) =
p(D|θ, ω)π(θ, ω)

p(D)
, (23)

where

D = observed data,

θ = parameters of interest,

ω = nuisance parameters,

p(θ, ω|D) = posterior density,

π(θ, ω) = prior density (or prior for short).

for all inferences. The result of a Bayesian inference is the posterior density p(θ, ω|D from which, if
desired, various summaries can be extracted. The parameters can be discrete or continuous and nuisance
parameters are eliminated by marginalization,

p(θ|D) =

∫
p(θ, ω|D) dω, (24)

∝
∫
p(D|θ, ω)π(θ, ω) dω.

The function π(θ, ω), called the prior, encodes whatever information we have about the parameters θ
and ω independently of the data D. A key feature of the Bayesian approach is recursion: the use of the
posterior density p(θ, ω|D) or one, or more, of its marginals such as p(θ|D) as the prior in a subsequent
analysis.
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These simple rules yield an extremely powerful and general inference model, a model that was
used, for example, in the discovery of single top quark production at the Tevatron [19, 20].

4.1 Model selection
Conceptually, hypothesis testing in the Bayesian approach (also called model selection) proceeds exactly
the same way as any other Bayesian calculation: we compute the posterior density,

p(θ, ω,H|D) =
p(D|θ, ω,H)π(θ, ω,H)

p(D)
, (25)

and marginalize it with respect to all parameters except the ones that label the hypotheses or models, H ,

p(H|D) =

∫
p(θ, ω,H|D) dθ dω. (26)

Equation (26) is the probability of hypothesis H given the observed data D. In principle, the parameters
ω could also depend on H . For example, suppose that H labels different parton distribution function
(PDF) models, say CT10, MSTW, and NNPDF, then ω would indeed depend on the PDF model and
should be written as ωH .

It is usually more convenient to arrive at the probability p(H|D) in stages.

1. Factorize the prior in the most convenient form,

π(θ, ωH , H) = π(θ, ωH |H)π(H),

= π(θ|ωH , H)π(ωH |H)π(H), (27)

or

= π(ωH |θ,H)π(θ|H)π(H). (28)

Often, we can assume that the parameters of interest θ are independent, a priori, of both the
nuisance parameters ωH and the model label H , in which case we can write, π(θ, ωH , H) =
π(θ)π(ωH |H)π(H).

2. Then, for each hypothesis, H , compute the function

p(D|H) =

∫
p(D|θ, ωH , H)π(θ, ω|H) dθ dω. (29)

3. Then, compute the probability of each hypothesis,

p(H|D) =
p(D|H)π(H)∑
H p(D|H)π(H)

. (30)

Clearly, in order to compute p(H|D) it is necessary to specify the priors π(θ, ω|H) and π(H). With
some effort, it is possible to arrive at an acceptable form for π(θ, ω|H), however, it is highly unlikely
that consensus could ever be reached on the discrete prior π(H). At best, one may be able to adopt a
convention. For example, if by convention two hypotheses H0 and H1 are to be regarded as equally
likely, a priori, then it would make sense to assign π(H0) = π(H1) = 0.5.

One way to circumvent the specification of the prior π(H) is to compare the probabilities,

p(H1|D)

p(H0|D)
=

[
p(D|H1)

p(D|H0

]
π(H1)

π(H0)
. (31)

and use only the term in brackets, called the global Bayes factor, B10, as a way to compare hypotheses.
The Bayes factor specifies by how much the relative probabilities of two hypotheses changes as a result of
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incorporating new data, D. The word global indicates that we have marginalized over all the parameters
of the two models. The local Bayes factor, B10(θ) is defined by

B10(θ) =
p(D|θ,H1)

p(D|H0)
, (32)

where,

p(D|θ,H1) ≡
∫
p(D|θ, ωH1 , H1)π(ωH1 |H1) dωH1 , (33)

are the marginal or integrated likelihoods in which we have assumed the a priori independence of θ
and ωH1 . We have further assumed that the marginal likelihood H0 is independent of θ, which is a very
common situation. For example, θ could be the expected signal count s, while ωH1 = ω could be the
expected background b. In this case, the hypothesis H0 is a special case of H1, namely, it is the same as
H1 with s = 0. An hypothesis that is a special case of another is said to be nested in the more general
hypothesis. The example, discussed below, will make this clearer.

There is a notational subtlety that may be missed: because of the way we have defined p(D|θ,H),
we need to multiply p(D|θ,H) by the prior π(θ) and then integrate with respect to θ in order to calculate
p(D|H).

4.1.1 Priors
Constructing a prior for nuisance parameters is generally neither controversial (for most parameters)
nor problematic. The Achilles heal of the Bayesian approach is the need to specify the prior π(θ),
for the parameters of interest, at the start of the inference chain when we know almost nothing about
them. Careless specification of this prior can yield results that are unreliable or even nonsensical. The
mandatory requirement is that the posterior density be proper, that is integrate to unity. Ideally, the
same should hold for priors. A very extensive literature exists on the topic of prior specification when
the available information is extremely limited. However, a discussion of this topic is beyond the scope
of these lectures.

For model selection, we need to proceed with caution because Bayes factor are sensitive to the
choice of priors and therefore less robust than posterior densities. Suppose that the prior π(θ) = Cf(θ),
where C is a normalization constant. The global Bayes factor for the two hypotheses H1 and H0 can be
written as

B10 = C

∫
p(D|θ,H1) f(θ) dθ

p(D|H0)
. (34)

Therefore, if the constant C is ill defined, typically because
∫
f(θ) dθ = ∞, the Bayes factor will

likewise be ill defined. For this reason, it is generally recommended that an improper prior not be used
for parameters θ that occur only in one hypothesis, hereH1. However, for parameters that are common to
all hypotheses, it is permissible to use improper priors because the constants cancel in the Bayes factor.

The discussion so far has been somewhat abstract. The next section therefore works through an
example of a possible Bayesian analysis of the DØ top discovery data.

4.2 The top quark discovery: a Bayesian analysis
In this section, we shall perform the following calculations as a way to illustrate a typical Bayesian
analysis,

1. compute the posterior density p(s|D),
2. compute a 68% credible interval [l(D), u(D)], and
3. compute the global Bayes factor B10 = p(D|H1)/p(D|H0).
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Probability model
The first step in any serious statistical analysis is to think deeply about what has been done in the physics
analysis and construct a probability model. The full probability model is the joint probability,

p(x, s, b|I),

which, as is true of all probability models, is conditional on the information and assumptions, I , that
define the abstract space Ω (see Sec. 2.2). In these lectures, we have omitted the conditioning data I , but
it should not be forgotten that it is always present and may differ from one probability model to another.

The full probability model p(x, s, b) can be factorized is several mathematically valid ways. How-
ever, we find it convenient to factorize the model in the following way,

p(x, s, b) = p(x|s, b)π(s, b), (35)

where we have introduced the symbol π in order to highlight the distinction we choose to make between
this part of the model and the remainder. We shall compute the likelihood from p(x|s, b) and view π(s, b)
as the prior for s and b. We assume p(x|s, b) to be

p(x|s, b) = Poisson(x, s+ b). (36)

The interpretation of p(x|s, b) is clear: it is the probability to observe x events given that the mean event
count is s+b. What does π(s, b) represent? This prior encodes what we know, or assume, about the mean
background and signal independently of the potential observations x. The prior π(s, b) can be factored
in two ways,

π(s, b) = π(s|b)π(b),

= π(b|s)π(s). (37)

The factorizations remind us that the parameters s and b may not be independent. However, we shall
assume that they are, at least at this stage of the analysis, in which case it is permissible to write,

π(s, b) = π(s)π(b). (38)

What do we know about the background? We know the count Q in the control region and we have
an estimate of the control region to signal region scale factor k. Since Q is a count, a reasonable model
for the likelihood is

p(Q|k, b) = Poisson(Q, kb), (39)

from which, together with a prior π(k, b), we can compute the posterior density

p(b|Q, k) = p(Q|k, b)π(k, b)/p(Q, k). (40)

As usual, we factorize the prior, π(k, b) = π(k|b)π0(b), where we have introduced the subscript 0 to
distinguish π0(b) from the background prior associated with Eq. (36). But, now we need to construct
π(k|b) and π0(b) using whatever information we have at hand.

Clearly, b ≥ 0. But, that miserable tidbit is all we know apart from the background likelihood,
Eq. (39)! Today, after a century of argument and discussion, the consensus amongst statisticians is that
there is no unique way to represent such vague information. However, well founded ways to construct
such priors are available, see for example Ref. [21] and references therein, but for simplicity we take the
prior π0(b) = 1, that is, the flat prior. If the uncertainty in k can be neglected, the (proper!) prior for k
is π(k|b) = δ(k −B/δB2), which amounts to replacing k in Eq. (40) by B/δB2. This yields,

p(b|Q, k) = Gamma(kb, 1, Q+ 1) =
e−kb(kb)Q

Γ(Q+ 1)
, (41)

for the posterior density of b, which can serve as the prior π(b) associated with Eq. (36).
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Fig. 10: Posterior density computed for DØ top quark
discovery data. The shaded area is the 68% central cred-
ible interval.

By construction, p(x, s, b) is identical in
form to the likelihood in Eq. (15); we have sim-
ply availed ourselves of the freedom to factor-
ize p(x, s, b) as we wish and therefore to reinter-
pret the factors. This freedom is useful because
it makes it possible to keep the likelihood simple
while relegating the complexity to the prior. This
may not seem, at first, to be terribly helpful; af-
ter all, we arrived at the same mathematical form
as Eq. (15). However, the complexity can be sub-
stantially mitigated by sampling from the prior so
that the model is represented by the relatively sim-
ple likelihood and an ensemble of points that col-
lectively represent the prior. The likelihood, as we
have conceptualized the problem, is given by

p(D|s, b) =
e−(s+b)(s+ b)D

D!
, (42)

where D = 17 events.

The final ingredient is the prior π(s). At
this stage, all we know is that s ≥ 0 and, again,
there is no unique way to specify π(s), though as noted there are well founded methods to construct it.
We shall assume either the improper prior π(s) = 1 or the proper prior π(s) = δ(s− 14).

Marginal likelihood
We have done the hard part: building the full probability model. Hereafter, the rest of the Bayesian
analysis is mere computation.

It is convenient to eliminate the nuisance parameter b,

p(D|s,H1) =

∫ ∞

0
p(D|s, b)π(b)d(kb),

=
1

Q
(1− x)2

N∑

r=0

Beta(x, r + 1, Q) Poisson(N − r|s), (43)

where x = 1/(1 + k),

Exercise 10: Show this

and thereby arrive at the marginal likelihood p(D|s,H1).

Posterior density
Given the marginal likelihood p(D|s,H1) and a prior π(s) we can compute the posterior density,

p(s|D,H1) = p(D|s,H1)π(s)/p(D|H1), (44)

where,

p(D|H1) =

∫ ∞

0
p(D|s,H1)π(s) ds.
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Assuming a flat prior for the signal, π(s) = 1,we find

p(s|D,H1) =

∑N
r=0 Beta(x, r + 1, Q) Poisson(N − r|s)

∑N
r=0 Beta(x, r + 1, Q)

, (45)

Exercise 11: Derive an expression for p(s|D,H1) assuming
π(s) = Gamma(qs, 1,M + 1) where q and M are constants

from which we can compute the central credible interval [9.9, 18.4] for s at 68% C.L., which is shown
in Fig. 10. The statement s ∈ [9.9, 18.4] at 68% C.L. means there is a 68% probability that s lies in
[9.9, 18.4]. Unlike the frequentist statement, this statement is about this particular interval and the 68%
is a degree of belief, not a relative frequency. That being said, the best Bayesian methods tend to produce
credible intervals that also approximate confidence intervals.

4.2.1 Bayes factor
As noted, the number p(D|H1) can be used to perform a hypothesis test. But, as argued above, we need
to use a proper prior for the signal, that is, a prior that integrates to one. The simplest such prior is a
δ-function, e.g., π(s) = δ(s− 14). Using this prior, we find

p(D|H1) = p(D|14, H1) = 9.28× 10−2.

Since the background-only hypothesis H0 is nested in H1, and defined by s = 0, the number p(D|H0)
is given by p(D|0, H1), which yields

p(D|H0) = p(D|0, H1) = 3.86× 10−6.

We conclude that the hypothesis s = 14 is favored over s = 0 by a Bayes factor of 24,000. In order
to avoid large numbers, the Bayes factor can be mapped into a (signed) measure akin to the frequentist
“n-sigma" [22],

Z = sign(lnB10)
√

2| lnB10|, (46)

which gives Z = 4.5. Negative values of Z correspond to hypotheses that are excluded.

Summary
We have given an overview of the main ideas of statistical inference in a form directly applicable to sta-
tistical analysis in particle physics. Two widely used approaches were covered, frequentist and Bayesian.
Statistics is not physics. While Nature is the ultimate arbiter of which physics ideas are “correct", the
ultimate arbiter of statistical ideas is intellectual taste. Therefore, we hope you take to heart the following
advice.

“Have the courage to you use your own understanding"

Immanuel Kant
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